Ver índice de contenidos del libro

1.2. El mito de la máquina todopoderosa

Muchas veces la gente se imagina que con la computadora se puede hacer cualquier cosa, que no hay tareas imposibles de realizar. Más aún, se imaginan que si bien hubo cosas que eran imposibles de realizar hace 50 años, ya no lo son más, o no lo serán dentro de algunos años, cuando las computadoras crezcan en poder (memoria, velocidad), y la computadora se vuelva una máquina todopoderosa.

Sin embargo eso no es así: existen algunos problemas, llamados no computables que nunca podrán ser resueltos por una computadora digital, por más poderosa que ésta sea. La computabilidad es la rama de la computación que se ocupa de estudiar qué tareas son computables y qué tareas no lo son. De la mano del mito anterior, viene el mito del lenguaje todopoderoso: hay problemas que son no computables porque en realidad se utiliza algún lenguaje que no es el apropiado.

En realidad todas las computadoras pueden resolver los mismos problemas, y eso es independiente del lenguaje de programación que se use. Las soluciones a los problemas computables se pueden escribir en cualquier lenguaje de programación. Eso no significa que no haya lenguajes más adecuados que otros para la resolución de determinados problemas, pero la adecuación está relacionada con temas tales como la elegancia, la velocidad, la facilidad para describir un problema de manera simple, etc., nunca con la capacidad de resolución.

Los problemas no computables no son los únicos escollos que se le presentan a la computación. Hay otros problemas que si bien son computables demandan para su resolución un esfuerzo enorme en tiempo y en memoria. Estos problemas se llaman intratables. El análisis de algoritmos se ocupa de separar los problemas tratables de los intratables, encontrar la solución más barata para resolver un problema dado, y en el caso de los intratables, resolverlos de manera aproximada: no encontramos la verdadera solución porque no nos alcanzan los recursos para eso, pero encontramos una solución bastante buena y que nos insume muchos menos recursos (el orden de las respuestas de Google a una búsqueda es un buen ejemplo de una solución aproximada pero no necesariamente óptima).

En este curso trabajaremos con problemas no sólo computables sino también tratables. Y aprenderemos a medir los recursos que nos demanda una solución, y empezaremos a buscar la solución menos demandante en cada caso particular.

Algunos ejemplos de los problemas que encararemos y de sus soluciones:

Problema 1.1. Dado un número N se quiere calcular N^33.

Una solución posible, por supuesto, es hacer el producto N × N × . . . × N, que involucra 32 multiplicaciones. Otra solución, mucho más eficiente es:

  • Calcular N × N.
  • Al resultado anterior multiplicarlo por sí mismo con lo cual ya disponemos de N^4.
  • Al resultado anterior multiplicarlo por sí mismo con lo cual ya disponemos de N^8.
  • Al resultado anterior multiplicarlo por sí mismo con lo cual ya disponemos de N^16.
  • Al resultado anterior multiplicarlo por sí mismo con lo cual ya disponemos de N^32.
  • Al resultado anterior multiplicarlo por N con lo cual conseguimos el resultado deseado con sólo 6 multiplicaciones.

Cada una de estas soluciones representa un algoritmo, es decir un método de cálculo, diferente. Para un mismo problema puede haber algoritmos diferentes que lo resuelven, cada uno con un costo distinto en términos de recursos computacionales involucrados.

Problema 1.2. Tenemos que permitir la actualización y consulta de una guía telefónica.

Para este problema no hay una solución única: hay muchas y cada una está relacionada con un contexto de uso. ¿De qué guía estamos hablando: la guía de una pequeña oficina, un pequeño pueblo, una gran ciudad, la guía de la Argentina? Y en cada caso ¿de qué tipo de consulta estamos hablando: hay que imprimir un listado una vez por mes con la guía completa, se trata de una consulta en línea, etc.? Para cada contexto hay una solución diferente, con los datos guardados en una estructura de datos apropiada, y con diferentes algoritmos para la actualización y la consulta.

Copyright (c) 2011-2014 Rosita Wachenchauzer, Margarita Manterola, Maximiliano Curia, Marcos Medrano, Nicolás Paez. La copia y redistribución de esta página se permite bajo los términos de la licencia Creative Commons Atribución - Compartir Obras Derivadas Igual 3.0 siempre que se conserve esta nota de copyright.